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A study is made of the effect of a constant magnetic field on the propagation of acoustic waves in metals. 
It is shown that the velocity of sound may experience two types of oscillations as a function of the intensity 
of the magnetic field. There exist geometric oscillations associated with the coincidences of the diameter of 
the cyclotron orbits of the electrons with a half-integral or with an integral multiple of the acoustic wave
length. There are also quantum oscillations which have the same origin as the de Haas-van Alphen effect. 

I. INTRODUCTION 

IN a previous paper,1 the author has given a discussion 
of the dependence of the velocity of acoustic waves 

on an applied magnetic field. The analysis given in (I) 
was concerned primarily with the interpretation of the 
results of the experimental work of Alers and Fleury,2 

and included a relatively detailed study of the effect of a 
magnetic field on the velocity of acoustic waves in the 
low-field limit (i.e., when cocr<<Cl). Further, the assump
tion was made that COT<$C1, a condition that is commonly 
satisfied in actual experiments. However, (I) also con
tains general expressions valid under a wide variety of 
conditions. In particular, it is shown there that when 
q£S>l and COC7V>>1, the velocity of sound exhibits an 
oscillatory behavior related to coincidences of the 
diameter of the cyclotron orbits of the conduction elec
trons, with a half-integral or with an integral multiple 
of the acoustic wavelength3,4 (geometric resonances). 
The purpose of this paper is to extend the discussion in 
(I) to effects that occur at low temperatures and high 
magnetic fields. The notation and the model used in 
this work are the same as that in (I) so that we shall 
not, as a rule, define any symbols which have already 
been defined there. As the title of the work indicates, we 
shall deal mainly with phenomena involving oscillations 
in the velocity of sound as a function of the applied 
magnetic field. 

Section I I contains a discussion of the quantum effects 
in the variation of the velocity of sound as a function of 
the applied magnetic field. We assume first that the 
conduction electrons within the metal behave as if they 
were free and then we consider the effect of a more 
general band structure (we confine our discussion to the 
independent particle model, however). The result is that 
the velocity of sound at low temperatures and at high 
magnetic fields is an oscillatory function of the mag
netic field. The character and origin of the oscillations 

* Supported in part by the Advanced Research Projects Agency. 
1 S. Rodriguez, Phys. Rev. 130, 1778 (1963). This paper is 

referred to as (I) in";the present article. I t contains references to 
previous work in the field. The notation used here is the same as 
that in (I). Reference to equations in (I) will be designated by the 
number of the equation preceded by the Roman numeral I. 

2 G. A. Alers and P. A. Fleury, Phys. Rev. 129, 2425 (1963). 
3 T . Kjeldaas and T. D. Holstein, Phys. Rev. Letters 2, 340 

(1959). 
4 M. H. Cohen, M. J. Harrison, and W. A. Harrison, Phys. Rev. 

117, 937 (1960). 

are the same as those occurring in the de Haas-van 
Alphen effect and, as we shall see in the next section, 
the effect should be most prominent for longitudinal 
waves. In Sec. I l l we use the free electron model to 
give a discussion of the oscillations in the velocity of 
sound arising from geometric resonances. 

II. QUANTUM OSCILLATIONS 

In this section we consider the oscillations in the 
velocity of sound in metals caused by the modification 
of the density of electron states by an applied magnetic 
field B0. The theory developed in (I) is still valid for the 
situation in which quantum effects occur, since the 
acceleration of the positive ions is certainly governed 
by a classical equation of motion. There are two changes 
to be made, however. The first is that Eq. I-(8) is not 
strictly valid. In fact, in the evaluation of the local5 

Fermi energy ri(r,i) one should use the density of energy 
states appropriate to an electron gas in the presence of 
the magnetic field. Let us designate this quantity, i.e., 
the number of energy levels per unit volume and per 
unit energy range at e, by g(e,B0). Now, if the concen
tration of electrons at position r and time t is #o+fti(r,£), 
the quantity 77=17(1",/) must be such that the following 
condition is satisfied: 

i » o + » i = / g(e,B0)f(6,v)de. (1) 

Here f(e,rj) is identical to the Fermi function /0(e) 
except that we have substituted rj instead of the equi
librium Fermi energy f. Since n^no we can make the 
approximation 

/(«,i/)=/o(«)+(u-f)0//au)w 

= M<)-(v-n(dfo/de). (2) 

With the aid of the relation 

n0= f 
Jo 

g(e,B0)f0(6)de (3) 

5 At this point we depart slightly from the notation in (I). The 
local Fermi energy is designated by r)(r,t), the Fermi energy in the 
absence of the acoustic wave but in the presence of B0 is called £, 
and f0= (mv0

2/2) is the Fermi energy in the absence of B0. How
ever, for all practical purposes f and f0 are quite close to each other. 
An expression for £ in terms of f0 is given in the Appendix. 
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•r 
we obtain 

v(j,t) = t+n[ [ g(e,B0)(-df0/de)de\ . (4) 
I—' o 

One can easily show, using the expressions for the energy 
eigenvalues of an electron in a magnetic field,6 that 

g(e,B0) = ( W 4 T T 2 ) ( 2 W A 2 ) 3 / 2 

X E n { e - ( H ~ § ) ^ > c } - 1 / 2 , (5) 

where o>c= — eB0/mc is the cyclotron frequency and the 
sum over n extends from n = 0 to the highest value of n 
for which the quantity under the radical is positive. I t 
is possible to express g(e,B0), in a more convenient 
form, as the inverse Laplace transform of the partition 
function associated with a single electron in the presence 
of a magnetic field.7 One obtains, when f0//&wc>M, 

f 
Jo 

g(e,B0)(— dfo/d€)de= 3n0/mv2. (6) 

where 

v* = vAl ( —) £(-1)' 

COs[(27T^fo/^Wc) — J 7 r ] 1 / f e o 0 \ 2 

X J I 1 / 2 _ ) 

s inh^x^Ty/koc) 12\2f0/ 
(7) 

In this equation we have kept the leading oscillatory 
term and the first two monotonic contributions to the 
integral in Eq. (6). Clearly, this correction is only nec
essary for longitudinal waves since shear waves are not 
accompanied by changes in the density of the material. 
The second change is that instead of making use of the 
classical values for the conductivity tensor one must 
take their quantum mechanical expressions which may 
be found, for example, in two papers by Quinn and 
Rodriguez.8,9 We have used the expression for the 
quantum mechanical conductivity tensor modified by 
the introduction of a phenomenological collision time in 
the same manner as it was done in Ref. 9. This assump
tion is, perhaps, a serious limitation in the present de
velopment, but without it little progress can be made. 
I t seems hardly necessary to give here the details of the 
derivation. Nevertheless, for the purpose of reference, 
we give the expressions for the conductivity tensor in 
the Appendix. 

First, we consider the case in which the direction of 
propagation of the acoustic wave is at right angles to the 
applied magnetic field. In this geometrical arrangement 
the frequencies co and the polarizations £ of the different 
acoustic modes are obtained, as a function of the wave 

6 L. D. Landau, Z. Physik 64, 629 (1930). 
7 A. H. Wilson, The Theory of Metals (Cambridge University 

Press, New York, 1958), 2nd ed., pp. 160-168. 
8 J. J. Quinn and S. Rodriguez, Phys. Rev. 128, 2487 (1962). 
9 J. J. Quinn and S. Rodriguez, Phys. Rev. 128, 2494 (1962). 

vector q, by solving the eigenvalue equation 

A . * = « ' « . (8) 

If we take q parallel to the y axis and B0 parallel to the 
z axis of a Carteisan coordinate system, the nonvanish-
ing components of A are [these formulas are quite 
quite similar to Eqs. I-(36)-I-(39) and are obtained in 
the same manner from I-(13) and I-(14)], 

•"•xx — 

Ct zrniu (<r0Rxx— 1)(1 —i/3) 

M~ Mr 1-ipaoRxx 

zmia) / (1 — ift)a0Rx 

A-xy — A ux — 
M 7K 

Ci 
A — n2 

1—if$<roRxx 

2 zmico 

(9) 

(10) 

M 3Af ( l+wV) Mr 

XI &oRyy— 1" 
(qvr) 

and 
l-ipaoRxx 3 ( l+coV) 

Ct zmicc (a0Rzz~ 1)(1 — iff) 
Azz^ — q2+~ 

M Mr l-ipa0Rzz 

r 2 ) ) ' 
( ID 

(12) 

We notice that the only difference between these equa
tions and the corresponding results in (I) is that, in 
Ayy, v0 has been replaced by v. Expressions for the com
ponents of the tensor R are given in (I). Now, in the 
limit in which co cr( l+coV)-1 / 2»l, 0 « 1 , and qv0/o)e<Kl} 

the approximate values of the nonvanishing compo
nents of A are 

Ct zmo)2 

AJ=—q2 ( l+i-X/i i ) , 
M M 

A xx"=ZMCJOXJJLI/2MT , 

Axy
r= —znuto)cfiXixi/2M, 

zmcoooc 
AJ' = {XMl+/3cor(l-jX /x1)} , 

A ' — 

M 

Ci zmq2v2 

(13) 

(14) 

(15) 

(16) 

4zmcx)2Xfjn(o:cT)2 

M 3J l f ( l+wV) 

zmcc2 zmcc 

J f ( l + w V ) 

~ / W ) 2 ( l - 2 X M l ) , (17) 

mcor4X/xi(cocr)2 (qvr)2 

MTL 1+CO2T2 3(1+O>2T2) •]• 

M M 

and 
A„"=izmwX/Xt/Mr. 

(18) 

(19) 

(20) 
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The quantities X, /*i, and juz are denned in the Appendix. 
I t turns out that in the approximation considered here 
the terms in Axy are negligible so that we can consider 
that the acoustic waves are purely longitudinal or 
purely transverse to a high degree of accuracy. In 
Eqs. (13)-(20), Ai/ and Ay" are the real and imaginary 
parts of Ay, respectively (i, j—x^ y, z). For a wave 
polarized in the i direction we have 

co2=(co'+tw")2 (21) 

and we can obtain both the velocity of sound s—oo'/q 
and the coefficient of attenuation ya=2a)"/s. If cor<<Cl 
the relative change in the sound velocity of a longi
tudinal acoustic wave propagating along the y axis (B0 

is taken, as always, parallel to the z axis) is given 
approximately by 

As zm BQ2 

-(v2-v0
2)~ 

st 6Msi2 Swpsi2 
(22) 

The terms involving X/xi can be seen to be negligible 
as compared with zm(v2—vo2)/6Msi2. I t is necessary at 
this point to mention that Eq. (19) in Ref. 9 is not 
quite correct. In fact, in that paper, the effect of the 
magnetic field on the density of electron levels was 
disregarded. If we use Eq. (18) of the present work 
we obtain 

zm r4X/xi(cocr)
2 (qvr)2 ~» 

ya(y,y) = 
MTSIL 3(1 + co2r2)_ 

(23) 

TLe last term in Eq. (19) in Ref. 9 is, of course, still 
correct but in the present work we have neglected 
terms in /32. 

The velocity of shear waves also experiences quantum 
oscillations as a function of a magnetic field but the 
amplitude of these oscillations is smaller than that for 
longitudinal waves. Since the calculations are rather 
trivial once we have Eqs. (13)-(20) we shall not write 
down the results explicitly. 

Alers and Swim10 have recently measured the change 
in the velocity of sound in Au as a function of B0 at 
liquid helium temperatures and using magnetic fields 
up to 105 G. They find a behavior that can be well repre
sented by Eq. (22). If 2T2kT>hwc, we find 

Zr — Z>0 

47r2^r/2fo\1 / 2 

m \ho)J 

Xexp(-2ir2kT/hooc) cos[(27rf0Acoc)-|7r]. (24) 

This result can also be obtained using a purely thermo
dynamic argument. In fact, the velocity of longitudinal 
acoustic waves propagating in an isotropic solid (when 
wr<<Cl) is given by 

. s=(Kp)-^, (25) 

10 G. A. Alers and R. T. Swim, Phys. Rev. Letters 11, 72 (1963). 

where K is the isothermal compressibility of the metal.11 

The bulk modulus K~l is obtained from the Helmholtz 
free energy F using the thermodynamic equation 

j f - i = V{d2F/dV2)T=Kc~
l+Ke~\ (26) 

Here Krl is the contribution to the bulk modulus 
arising from the short-range forces among the ion cores 
and Krx is the bulk modulus of the conduction elec
trons. We do not expect Kc to depend upon the applied 
magnetic field in a significant fashion. However, Ke 

does. In fact, Lifshitz and Kosevich12 have shown that 
the free energy of the conduction electrons has an 
oscillatory contribution 

eB0\
il2 kT 

Fosc=F( \ 
2TT 1/2 

he) 2 7 r 2 l | ( 9 2 5 / ^ 2 | 

oo cos[— (yhcSo/eBo) — lirvd^lirl cos(girvm*/2m) 
X E . 

>-i vz>2 s i n h [ 2 7 r 2 ^ r / ^ c ] 
(27) 

This expression has been obtained using a theory of 
Onsager13 for the description of the stationary states of a 
Bloch electron in the presence of a magnetic field. 
According to Onsager, the stationary states are such that 
the area S(e,kz) of the orbit in k space of an electron 
of energy e and having a component kz of its wave 
vector k along the direction of Bo, must satisfy the 
condition 

S(e,ks) = - 2weB0(n+ 6)/he. (28) 

Here n is a non-negative integer and 8 a phase factor 
whose numerical value lies between zero and unity (for 
free electrons 5 = J) . The quantity S0 is the extremal 
cross-sectional area of the Fermi surface by planes 
perpendicular to Bo. If more than one extremal cross 
section exists, then Eq. (27) contains a sum of terms 
each one arising from such an extremum. The upper 
sign of JT is taken when the extremum is a maximum 
while the lower sign is used if it is a minimum. 
The symbol m* stands for the cyclotron mass 
ni*—(h2/27r)(dS,/de)o, where it is understood that the 
derivative is evaluated for an electron moving around 
the orbit for which 5 is an extremum. The cyclotron 
frequency o)c is defined as coc= —eBo/ni*c. The quantity 
d2S/dkz

2 is to be evaluated on the Fermi surface and 
for that value of kz for which 6* is an extremum. The 
term co$(gTrvni*/2in) owes its origin to the effect of the 
magnetic field on the orientation of the intrinsic mag
netic moment of the electrons. Here g is the spectro-

11 At low temperatures the adiabatic and isothermal compres
sibilities differ by a negligible amount. If cor<$Cl it is easy to con
vince oneself that the electronic contribution to the velocity of 
sound arises from the isothermal compressibility of the conduction 
electrons. 

1 2 1 . M. Lifshitz and A. M. Kosevich, Zh. Eksperim. i Teor. Fiz. 
29, 730 (1955) [translation: Soviet Phys.—JETP 2, 636 (1956)]. 

13 L. Onsager, Phil. Mag. 43, 1006 (1952). 
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scopic splitting factor and m the free electron mass. 
There is also a nonoscillatory contribution to the free 
energy which contains a term equal to the free energy 
in the absence of a magnetic and another proportional 

As n0
2 / hc\1/2kT?n*2( 2TT | 1 / 2 «> 

*i~ psi2lgtfo)J\ eBj W \\d2S/dk2\\ , - i 

We have designated by g(e) the density of energy states 
when ^ 0 = 0 . If 2w2kT>hcoc, then only the first term 
(V=l) in the sum on the left-hand side of Eq. (29) is 
important. If B0 points along a [111] direction of a Au 
crystal we expect a large oscillatory dependence of s 
with magnetic field. The reason for this is that in Au 
we have an extremal orbit14 in this direction with 
w* = 0.44m ("neck" orbit; for further details see Ref. 14 
and other references therein). The period of the oscilla
tions of s as a function of B0~

x is 

/ 1 \ lire 
A ( - ) = , (30) 

\BQ/ hcSo 

which is identical to what one expects in the de Haas-
van Alphen effect.15 Alers and Swim10 have observed 
precisely this effect. Using Eq. (29) and m*=0.44m at 
J - 4 ° K and B0= 105 G for Au, we find As/s£~20X 10~6 

in reasonable agreement with the results of Alers and 
Swim. This calculation is rather crude, however. In fact, 
for lack of more precise information, we have used 
| d2S/dkz

21 = 2ir and we have not considered the collision 
broadening of the Landau levels. Dingle16 has shown 
that the collision broadening would give a further re
duction of the first term in the sum of Eq. (29) by a 
factor exp(—27T/COCT), where r is the average relaxation 
time of the electron around the extremal orbit (Dingle's 
result is strictly valid only for a free electron gas). 

We now consider briefly the case in which q is parallel 
to B0. The basic equations are again I-(25) and I-(26) 
with the exception that in I-(26) we must replace Vo by 
v and l=v0T by vr. The results have been discussed in 
some detail in previous work17 so that we shall not 
discuss this question again. I t is interesting to remark 
however that Eq. (29) is valid here too for the propaga
tion of a longitudinal acoustic wave parallel to the 
direction of Bo. The quadratic increase B0

2/8TPSI2 is not 
present in this geometrical arrangement. For the case 
of shear waves propagating in the direction of the 
applied magnetic field there does not seem to be ap
preciable quantum effects for fields of ordinary intensity 

14 D. Shoenberg, Phil. Trans. Roy. Soc. (London) A255, 85 
(1962). 

15 See, for example, D. Shoenberg in Progress in Low Tempera
ture Physics, edited by C. J. Gorter (North-Holland Publishing 
Company, Amsterdam, 1957), Vol. 2, pp. 226-265. 

16 R. B. Dingle, Proc. Roy. Soc. (London) A211, 517 (1952). 
17 J- J- Quinn and S. Rodriguez, Phys. Rev. Letters 9, 145 

(1962); see also Ref. 8. 

to the square of B0. Nevertheless, the latter is negligible 
for fields presently available in the laboratory. Using 
Eqs. (25), (26), and (27) we obtain, after making a few 
obvious approximations, 

cosf— (phcSo/eBf^ — lirvd^Fiwl co$(girv?n* / 2rn) 
1/2 . m (29) 

smh\j2T2vkT/hooc~] 

and for acoustic frequencies that do not approach the 
conditions for which cyclotron resonance absorption 
occurs. This question has been discussed by Kjeldaas18 

using a classical model. In this geometry we expect a 
shear wave to experience a rotation of its plane of 
polarization as it progresses within the material. The 
angle of rotation is —tnca:2/27repst

s per cm of path and 
per G of applied magnetic field. The foregoing result is 
applicable if #/<3Cl only. This angle of rotation is usually 
negligible for acoustic frequencies of the order of 
10 Mc/sec but it may become appreciable at much 
higher frequencies. 

Finally, we make two remarks about the result of 
Eq. (29). The first is that this equation is not strictly 
applicable to a material in which the Fermi surface 
possesses pieces in several bands. When this is the case, 
the compressions associated with the longitudinal wave 
may alter the energy discontinuities across the bound
aries of the Brillouin zone in an appreciable way. This 
clearly gives rise to an additional change in the density 
of electron states which manifests itself in a correspond
ing change in the elastic constants. Price19 has been 
able to accout for the experimental results of Mavroides 
et al.20 in Bi considering that the change in the velocity 
of sound in this semimetal as a function of B0 arises 
mainly from contributions to the elastic constants 
coming from transfer of electrons among the several 
valleys in the energy surfaces. The electrons are trans
ferred among the several valleys because their relative 
position in energy is altered by the passage of the 
acoustic wave. The second remark is that there appears 
to be a contradiction between Eq. (29) which is obtained 
by a thermodynamic argument and Eq. (22) which is 
derived using the equation of motion for the acoustic 
wave. The difference between these two equations is the 
presence of the quantity B0

2/87rpsi2 in the latter. This 
term is quite different from the one that originates in 
the nonoscillatory contribution to the free energy of the 
conduction electrons. In fact, the nonoscillatory part of 
the free energy is F0+F/=F0—ixVB0

2, where % *s the 
constant part of the magnetic susceptibility (i.e., the 
sum of the Pauli and the Landau susceptibilities) and 
F0 is the free energy when B0 = 0. To establish the order 

18 T. Kjeldaas, Phys. Rev. 113, 1473 (1959). 
19 P. J. Price (unpublished). The author is grateful to Dr. Price 

for making his work available to him. 
20 J. G. Mavroides, B. Lax, K. J. Button, and Y. Shapira, 

Phys. Rev. Letters 9, 451 (1962). 
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of magnitude of this contribution to the velocity of 
sound we evaluate it for a particularly simple model. We 
assume a metal containing conduction electrons with 
spherical energy bands of effective mass m*. The 
quantity F' is given by 

V flni*\m f l / 2 m \ 2 

F = f \ ^ 1 / 2 ( ^ ) 2 ] ! _ _ ( -) 
4TT2\ h2 3\gm*J 

Here /* is the intrinsic magnetic moment of the electron 
and g the spectroscopic splitting factor. The relative 
change in the velocity of longitudinal acoustic waves 
turns out to be 

As Z(»B0)
2 

st 12toMsi 
1- it 

2m \ 2 

zm*J 

which is of the order of one part in 1010 for J50=105 G 
and for a metal such as Au. Clearly, this amount is 
always negligible as compared with B0

2/8irpsi2. This 
difficulty can be resolved by considering the frequency 
dependence of the last term, in Eq. (22). At first sight it 
does not depend on the frequency at all. However, it is 
easy to convince oneself that if the dimensions of the 
sample are smaller than half of the wavelength of the 
acoustic disturbance, then B0

2/8irpsi2 is absent from 
Eq. (22). The reason for this can be seen if we consider 
a longitudinal wave propagating along the y axis with 
Bo parallel to the z axis. Since, for ordinary ultrasonic 
frequencies, there is almost complete screening of the 
ions by the conduction electrons, the total current 
density in the y direction vanishes. However, the 
Lorentz forces on the ions and on the electrons due to 
the presence of B0 have different signs so that a Hall 
current density appears directed along the x axis and 
proportional to B0. The magnetic field in turn interacts 
with the Hall current to give rise to a force per unit 
volume of material proportional to B0

2. This is the origin 
of the quadratic dependence of As on B0. However, if 
the dimension of the sample along the direction of 
propagation becomes less than half the acoustic wave
length, a depolarizing electric field can be established 
that reduces the magnitude of the Hall current. In fact, 
when we let co approach zero, we expect B0

2/8irpsi2 to 
disappear from the right-hand side of Eq. (22). 

III. GEOMETRIC OSCILLATIONS 

The geometric oscillations in the velocity of sound 
have been discussed to some extent in (I) so that our 
description here will be brief. These resonances manifest 
themselves when COCTOM and q£2>l. The geometrical 
arrangement in which the acoustic wave propagates at 
right angles to the magnetic field B0 is of particular 
interest. We shall, in fact, limit our study to this ge
ometry. If we assume O>CT»1, /5<<Cl, and that cor does 
not appreciably exceed unity, the nonvanishing com
ponents of the tensor A are given by the approximate 

relations 

Ct 
Axx = ~-q2 

M 

Cz 
Ayy = —q2 

M 

Mi 

zmqA 

M 
<1+SXX), (31) 

{ql)2 

3M 3M 1+coV 

3/3 ] zmioo 
X | SVy' + — (1+C0V)S„2 + (Syy~ 

COT J Mr 

zmtco 
Axy= (uc+qv&Sxv), 

M 

•1), (32) 

(M) 

and 
Ct 

M Mr M 
-(l+5„). (34) 

In these equations, the expressions for S^ are defined in 
(I) and 

3(l+co2r2) 

?2/2 
o?/ (35) 

I t was shown in (I) that it is possible to neglect the 
contributions arising from Axy. A calculation of the 
sound velocity for shear waves polarized in the x and 
z directions and for longitudinal waves when (3/3/W) 
X(l+co2r2)<<Cl was described in (I). The results were 
displayed in Figs. 1 and 2 of that work. However, if 
qvo/o)c<^l, Sxy=—o)c/qvo so that as coc—><*> the graph 
displayed in Fig. 2 of (I) is not completely accurate for 
extremely large magnetic field. In fact, when qvo/o)c<^l, 
the term involving Sxy in Eq. (32), namely 

zniooP(ql)2SXy2 

Mr 

Bo2 

*—Q 
Airp 

(36) 

FIG. 1. Relative 
change in the veloc
ity of longitudinal 
acoustic waves prop
agating at right 
angles to B0 for r = 0 
and f = 0.1. The ab
scissa is the param
eter w — qvu/uc-
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FIG. 2. Relative 
change in the veloc
ity of longitudinal 
acoustic waves prop
agating at right 
angles to B0 as a 
function of w for r = 1 
and r=10. 

This is once more the quadratic increase of the velocity 
of sound as a function of B0. In Figs. 1 and 2 we give 
plots of the relative change in the velocity of longi
tudinal sound waves as a function of w = qv0/uc for 
several values of the parameter 

3£ 
f = = _ ( l + w 2 r 2 ) > 

(37) 

We do not extend our values to w—0 because in this 
region the term Bo2/4irp can exceed si2 and then the 
velocity of sound would increase linearly with the in
tensity of applied magnetic field. The case in which 
r= 0 is given as a limiting case. However, for sufficiently 
high magnetic fields, the term in r can become of 
importance. 

I t is interesting to notice that if r<£A (see Fig. 1) the 

maxima and minima of As/si occur at the same positions 
for which the ultrasonic attenuation has maxima and 
minima. In fact, the curve associated with r = 0 in 
Fig. 1 is identical to the solid curve in Fig. 3 of Ref. 4. 
However, when r> 1 we see from Fig. 2 of the present 
work that there are only minima of As/si at the points 
w for which the graph for r=0 exhibited extrema. The 
reason for this behavior is clear. The maxima and 
minima of Syy occur at the zeros of the function gj{w). 
However, at these points Sxy vanishes and, if r is 
sufficiently large, Sxy

2 in Eq. (32) dominates the be
havior of As/si as a function of w. 

Another case of interest occurs when \PaoRxx\^>l. 
For this condition to be satisfied over a wide range of 
values of w it is required that ($ itself be much larger 
than unity. This may occur at sufficiently high fre
quencies. If #2>1 and WCT(1+CO 2 T 2 )~ 1 / 2 »1, the approxi
mate value of Ayy is 

FIG. 3. Relative 
change in the veloc
ity of longitudinal 
acoustic waves prop
agating at right 
angles to B0 as a 
function of w for 
0 » 1 . 

ztnqV _Ci 2 

A.yy~ q T 
M 3M 

zrnia)/ (ql)2 

Mr\ 

zmoo2 

l+o>V2 l+Sx 

+ M <* 

(qiy 

1+OlV 1 + 5, ; ) • < 
(38) 

Then, the relative change in the velocity of sound is 

As zm{qiy { 3SX~* 

si 61f(l+co2r2) 1+SX 

(39) 

This result has been displayed in Fig. 3. The curve is, 
of course, identical to the dotted line in Fig. 3 of Ref. 4. 
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APPENDIX 

In this Appendix we give, for the purpose of reference, 
a number of results concerning the electrical conduc
tivity tensor of a free electron gas in the presence of a dc 
magnetic field. Following Ref. 8 we designate the sta
tionary states of an electron by the quantum numbers 
nkykz and the corresponding energy eigenvalues by Enkz. 
The nonvanishing components of the electrical-con
ductivity tensor cr(q,co) for a magnetic field pointing 
along the z axis and q parallel to the y axis of a Cartesian 
coordinate system are 

(TO r 4X 
&xx~ ;— 1 2Z fo{En 

1 + icorL N nkykz 

.) 

oo /dJn+a,n\'Z « 1 
X £ ( •) , (Al) 



O S C I L L A T I O N S O F V E L O C I T Y O F S O U N D I N M E T A L S 

and 0*0 1 
Tyv=- (1+icor) X) fo(Enkz) 

(cocr)
2 NX nkykg 

00 

x E /* 
a 

<JZZ=O-0{l+io)T)-l(l-4:Xllz). 

In these equations 

/ n-\-a, n 3 

0)CT & 
J xy~ 

and 

Vzz — 
0"o 

1+icor dX 

4X 

(A2) 

(A3) 
and 

r 4X /k,\ 
1 X fo(EnkM-) 

L N nhykz \ Q / 

^ 2 

00 

• \ 2L* Jn+a, n 

n,=N-> E /o(£»*.)(»+l)' 

M^==— Z (— ) fo{Enkz). 

N nkykz\ q / 
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(A12) 

(A13) 

(A14) 

a2+72J 
Here 

and 

X= hq2/2mo)c, 

7=( l+ ia r r ) /co c r , 

(A4) 

(A5) 

(A6) 

The quantities /xi and /x2 have been used in Ref. 9, 
where M=W/ho)c and ne=We/ho)c. In the work of 
Sec. II we require the components of the resistivity 
tensor R rather than those of <r. The nonvanishing 
components of R are 

(r0Rxx=(l+ia>T) ( I + - X M I 
47 

+—X 7
2 MI 

fn>n{X) = (n\/n'WX^-^ 
Xexp(-iX)L„<»'-»>(X), (A7) 

if n'>n and 

/n '»(X)=(- l )» ' -Vn»'W (A8) 

if n'<n. The function Z,n
(o°(X) is an associated Laguerre 

polynomial.21 

For the study of the quantum effects which is de

l l 1 \ 
-2XW+—X2

M2+—X2) , (A15) 
6 72 / 

<roRyy= (cocr)2(l+*WH 4XMi+72+-X7
2Mi 

+8X2
Mi2-6X2M2 

25 
-H- (A16) 

( 25 
l—Xfx1+—Xy2fjLi 

4 

r n 

]• 
and 

-74-6X2 /x2—X2 

r 3 15 
crytf=<ro(wcT)""2(l+icor) 1-—X/zi—7

2H X7V1 
L 2 8 

(A9) 

7 5 \ 
-5X2

Ml
2+-X2/x2+—X2), (A17) 

2 24 / 

cr0Rzz=(l+iccr)(l+4:Xfxz). (A18) 

We have kept <rzz and i^2 to order B0~
2 because this is 

as far as it is necessary to expand to obtain the most 
important oscillatory contributions to the real and 
imaginary parts of the tensor A. 

In the text we have defined a quantity v2 [see Eq. 
4_ 44--V2 -L-Lval (MO) (7)]. We must remark that ZJ2 is w^ equal 2f/m. In fact, 

6 ^ 72 J the Fermi energy for conduction electrons of spherical 

K 
effective mass m* is 

15 
0xV=—<rt,x=—<ro(<aeT) H 1 — 3Xm—7H X7V1 

+74+-XV2+ 
2 24 

!4 J 
(All) 

f=f0^1-(^)2{l--(-)2}--(^)1,2 

L \2fo/ I 3 V * / ) f0 \2f0/ 
( - 1 ) ' cos(gwvtn*/2fn) sin[(2irvf0/&«>c)—W' 

21 A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, 
Higher Transcendental Functions (McGraw-Hill Book Company, 
Inc., New York, 1953), Vol. 2, p. 188. 

XE 

Here < 

v1'2 smh(2ir2vkT/ha>c) 

-eBo/tn*c as usual. 

•]• 
(A19) 


